
Towards a Hybrid Client/Server and P2P Architecture

for Content Delivery over the Internet

Soufiane Rouibia
1
, Majd Ghareeb

2
, Benoît Parrein

2
, Marco Biazzini

3
, Raziel Carvajal-Gomez

3
,

Adriana Perez-Espinosa
3
, Patricia Serrano-Alvarado

3

1TMG

St Sébastien sur Loire – France

rouibia@tmg.eu

2 LUNAM Université

Université de Nantes,

IRCCyN UMR CNRS 6597

Polytech Nantes, France

name.lastname@univ-nantes.fr

3LUNAM Université,

Université de Nantes,

LINA UMR CNRS 6241,

Nantes, France

name.lastname@univ-nantes.fr

Abstract— Regarding the limitations of the traditional

Client/Server communication mode from the one hand, and of

the P2P mode from the other hand, hybrid network architectures

have recently gained large popularity. In this paper we propose a

new hybrid architecture that is called P2PWeb, between the

centralized client/server and the non-centralized P2P

architectures for content delivery over the Internet. The main

objective of this proposal is to reduce the load over the server in

order to provide a better Quality of Service (QoS) for the end-

users. A BitTorrent-like protocol has been implemented and

deployed to reach the objective. Moreover, we support our

system with a user-satisfaction control technique that helps to

improve the provided service of the hybrid P2PWeb architecture.

The experimentation results and the performance evaluations

that we have made show the efficiency of the proposed system in
terms of QoS evaluations.

Keywords- Content delivery; Client/Server; P2P; Hybrid

architectures; P2PWeb; User-satisfaction; WUW.

I. INTRODUCTION

The rapid development of networking technologies has
tremendously facilitated the content delivery over Internet. In
this scope, the traditional client/server (C/S) communication
mode has suffered from several drawbacks that necessitated the
deployment of alternative solutions such as the Peer to Peer
(P2P) communication mode. However, in order to provide an
efficient reliable and scalable content delivery service, neither a
C/S-based, nor a P2P-based architecture can reach the target
alone. The centralized server of C/S architecture may not
support the huge loads over the Internet, which undermines the
system scalability and leads to a bad content delivery service. It
requires high accessibility features that may not be easily and
cheaply provided [1]. On the other hand, P2P architecture
needs a sufficient number of ’seeders’ (content sources) to
launch the content delivery service. Besides, it is not easy to
fairly determine the contribution of each peer, which may also
affect the reliability of the system. To cope with these issues,
different researches have been already proposed, to provide
hybrid compromise network architectures between C/S and
P2P architectures [1,2,3,4]. In some of these works, authors

propose to release the server after a given instant and to switch
to a pure P2P communication mode [1,2]. Other approaches
propose to start the content delivery with a P2P communication
mode, and then to redirect the clients’ requests to the content
server in case of need [3]. Nevertheless, neither of the above
listed researches has considered the user satisfaction about the
provided service. In this article we propose a new hybrid
architecture (P2PWeb) that helps to integrate the P2P
technologies in a web environment in order to provide an
efficient content delivery service over Internet. In our proposal,
the server continues to response to clients’ requests as long as it
is not overloaded. Then, when it arrives to a saturation
threshold at which it cannot deliver the content to any new
client, it stays in the system and it starts to redirect the new
clients (peers) to retrieve the content from the other
clients/peers that are already present in the system and that are
receiving that content. P2PWeb aims at reducing the load over
the server and providing better QoS (Quality of Service) and
QoE (Quality of Experience). On the other hand, and in order
to improve the users’ satisfaction in our hybrid architecture, we
propose a technique for user-satisfaction control that is called
WUW (What User Wants). WUW main objective is to
personalize the end-users preferences in order to ensure the
best user satisfaction from both points of view, the delivered
service (server) and the perceived service (clients/peers).

Section II of this paper presents the hybrid P2PWeb
architecture and its networking protocol in more details. In its
turn, Section III shows the advantages of using this architecture
by demonstrating some of the experimentation results and the
performance evaluations that we have obtained. Furthermore,
Section IV describes WUW technique and its efficient utility.

II. THE HYBRID P2PWEB ARCHITECTURE AND DESIGN

In this section, we introduce the hybrid architecture
P2PWeb in more details. Then, we explain its network protocol
and the P2PWeb compatible browser-plugin that we have
developed. Moreover, we illustrate how the network coding
can be efficiently used to improve the provided service and to
ameliorate the availability of distributed data chunks.

mailto:rouibia@tmg.eu
mailto:name.lastname@univ-nantes.fr
mailto:name.lastname@univ-nantes.fr

A. System Architecture

In P2PWeb architecture, the server plays the role of a
“content provider” and of an “index server” at the same time.
For a given content, the delivery start in a C/S mode. Then, at a
given clients’ number threshold at which the server becomes
saturated, the system changes the delivery to a P2P mode
among the already connected P2PWeb clients and that
potentially accept to share their downloaded chunks.

Server

Content

Preparation

QoS/QoE

Content

provider

User

Chunks

Descriptors Manager

Kernel

P2PWeb

Server

Browser

with

plugin

peer
peer
P2PWeb

peers

Contents

Chunks
peer
P2PWeb

Clients

User

Browser

P2PWeb Client/Peers Set

Informations regarding peers Chunks

Figure 1. P2PWeb hybrid architecture.

Figure 1 represents the system architecture blocks. The first
server’s task is to provide the different types of contents (web
pages, text, images, audio, video, etc) that will be distributed in
the P2PWeb system. The content passes through a Content
Preparation phase, in which it will be divided into variant
number of chunks to be injected in the system. Chunks
generating process depends on the type of content. For
example, for the real-time media streaming, each chunk will
represent the data to be delivered for a given portion of time.
Hence, some important factors such as time stamp and chunk
order should be taken into consideration. On the other hand,
non-real-time content downloading has typically less
restrictions in term of delay. Each content file will have its own
related list of chunks that is signed by the content preparation
service and that will be transmitted to the Manager by the
kernel P2PWeb Server. This list contains the associated content
ID, the chunk IDs, the chunk time stamp and the chunk hashes.
To ensure the safety of the contents, these hashes are managed
in a centralized manner via the Manager. P2PWeb Manager is
the general coordinator that has a global knowledge about the
system state. It knows:

− what content is available, where it is located and in
which quality;

− which P2PWeb clients/peers are on-line and the
resources/content they have;

− which and how many P2PWeb clients/peers request a
given content.

As long as the server is not saturated, the kernel P2PWeb
server responses to the new arriving request in a C/S content
delivery mode, by sending the chunks that are formatted to be
easily used in the P2P exchange between peers. Moreover, it
declares the new client to the Manager as a new content owner.
Although P2PWeb clients are receiving the content directly
from the server, but we have to pay attention that they are not
typical clients, since they are receiving the content in terms of
chunks and at a given instant, they become sources for this
content.

When the server arrives to a saturation threshold, with
which it will not be able to deliver the content to any new
client, the Manager takes the responsibility of responding to the
new requests. This will be done by sending meta-data
information about the content with a list of P2PWeb clients and
peers that are already downloading this content to the requested
user. A special P2PWeb plugin that is installed on the user
browser will analyze the received information and will
consequently start to download the content. Here, we can
notice that as long as the server is at its saturation threshold, all
the new arriving nodes will not be treated as clients, but as
peers. Hence, instead of downloading the content chunks
directly from the server, these peers will retrieve their
requested chunks from the P2PWeb clients/peers that are
already connected to the system and that are downloading the
content in question.

P2PWeb hybrid architecture can be supported with an
adaptive QoS/QoE management technique, like the one
presented in [5]. With such a technique, P2PWeb clients and
peers will feedback the Manager with activity reports about the
perceived quality and the user satisfaction, so it will be able to
improve the delivery service accordingly and in real-time.

Instead of starting from crash, we adapted the BitTorrent
Open Source code, developed in Python Language that has
already proved a good and reliable performance. The
modifications that we have applied consist of adapting the
queries for a Web exchanges. The first chunks to be
downloaded are organized in order to have sequential and not
random chunk downloading. We also added some parameters
to measure the QoS and manage the overlay construction using
these measurements.

B. P2PWeb use case design

Figure 2 depicts the sequence diagram of a use case for a
content delivery process in P2PWeb system. In the first case,
when the server did not reach its clients’ number threshold yet,
a simple content delivery process between the server and the
user will be done in a C/S mode. On the other hand, the second
case represents the steps of content delivery in P2P mode when
the server threshold is reached. In this case, P2PWeb plugin
will obtain the meta-data information and a set of P2PWeb
clients/peers that are already downloading the content from the
Manager. Then it will start to retrieve the content from this set.

Server

User
peer

peer

P2PWeb

Server
Manager

P2PWeb

plugin

Nodes in peerset

1) Content request

2) Download request

4) Join

ACH

Clients/peers set

6) P2P Content delivery

7) content delivery

3) Download information

Case1: Threshold

is not reached

Case2: Threshold

is reached

1') Content request

2') content delivery

5) Get P2PWeb

clients/peers set

Figure 2. A use case for content delivery process in P2PWeb system

C. Network coding

A key factor that can help to improve the QoS in P2PWeb
architecture is the introduction of redundant content chunks
into the network. These chunks can be basically produced by
linear combinations of original chunks. Many Forward Error
Correction (FEC) algorithms can be used for this purpose, from
the simplest ones e.g. XORing original chunks to the more
complex encoding ones that includes optimal MDS property
i.e. Maximum Distance Separable codes. By definition in error
control theory, redundant codes produce n from k original

message packets with n k. With optimal MDS codes, it is
possible to retrieve the original k message packets (chunks in
our case) from any k packets out of n. Codes construction could
be systematic, in which the k first packet are the original
packet, or non systematic, in which e the n output packets are
totally encoded. To reduce the complexity at the decoding side
(for the peers), we adopt the systematic for of the codes in
P2PWeb protocol. Hence, the complexity will be reduced to
zero when all the original chunks are available. Figure 3
summarizes the erasure coding into the P2PWeb architecture
and the MDS property.

Reed-Solomon (RS) codes are the most common MDS
codes. These codes are used in the famous distributed file
system HDFS (Hadoop Distributed File System) within his
RAID module. HDFS-RAID has been experimented today
within a very popular social network [6], and it gave substantial
benefits compared to the simple replication mechanism [7].
Recently, new MDS erasure coding algorithms are proposed
based on discrete geometry and tomographic operators [8].
These algorithms help to get flexible redundant rate with linear
complexity in coding and decoding, by making adequation
between chunks and geometrical projection of data. An
implementation of erasure codes in P2PWeb is done in [9].

However, the comparison between Reed-Solomon codes and
those new codes are out of the scope of this paper.

Figure 3. Redundant chunks production by MDS erasure coding within the

P2PWeb hybrid architecture

III. EXPERIMENTATION RESULTS AND PERFORMANCE

EVALUATIONS

In this section we present some of the experimentation
results that we have realized on P2PWeb architecture. We first
present comparison results to show the advantage of using
P2PWeb hybrid architecture against a traditional Client/Server
transmission mode. Then, we study the performance of our
hybrid proposal in different scenarios and in larger scales.

A. Experimentation setup

Our experimentations have been done in a virtualisation
environment that contains a server and two clusters of 23 and
50 virtual machines respectively, with public IP-addresses for
the different machines. Several content files with different sizes
have been tested to validate our experimentations. We present
the results obtained by using a JPG content file of 39 MB size.
At this step of experimentation, the other file sizes did not
present a significant difference.

B. Experimental Results

1) P2PWeb vs pure Client/Server architecture

The objective of the first set of experiments was to show
the advantage of the proposed P2PWeb hybrid architecture
against a traditional C/S communication architecture in terms
of QoS parameters represented by the delay. For the two
scenarios (C/S and P2PWeb), we ran a server with the same
downloading rate of 2MB/s using the first cluster of virtual
machines. In the former scenario, the 23 nodes will act as pure
clients and will download the content from the server directly.
Furthermore, in P2PWeb scenario the server will start to
upload the content to the first 8 arrived nodes as pure clients.
Starting from the 9th arrived node to the network, the server

responses to user requests by sending a list of P2PWeb
clients/peers that are already connected to the network and that
accept to share the content with a maximum uploading rate of
300KB/s for each client/peer.

We can notice in Figure 4 how in C/S scenario, the more
the number of connected clients is, the more the demanded
time for downloading the content will be. On the hand, by
using P2PWeb architecture, the first 8 nodes (clients) will take
the same time to download the content as in C/S scenario.
While, starting from the 9th node, the new arriving nodes
(peers) will take considerably less time to download the
content, since they will not be limited only to the server, but
they will use the other clients and peers on the network as
content providers.

Figure 4. P2PWeb vs pure Client/Server architecutre

2) QoS P2PWeb performances

After illustrating the benefits of P2PWeb hybrid
architecture, our goal in the second set of the experiments is to
study the performance of the proposed architecture in a way
that gives better results in terms of some QoS metrics which
are the delay and the network throughput. Besides, we aimed at
demonstrating the ability of applying our hybrid architecture in
large scales. Hence, we extended the platform of 23 nodes that
we have used in the first set of experimentations with another
platform of 50 nodes as Figure 5 shows.

To reach the objective, and in order to give more realistic
results, we made our measurements on a machine that is put
behind a firewall like the most part of the connected terminals
over the Internet [10]. Moreover, we limited the measurement
time to the first 60 seconds. This minute corresponds in many
P2P applications to the TTL (time to live) of chunk delivery
[11,12]. Then, we tried to find the most suitable P2PWeb
topology (clients vs. peers) for this precise period. We studied
the impact of three important parameters variation on the
hybrid P2PWeb architecture, which are:

− the number of P2PWeb clients that retrieve the
content from the server directly;

− the number of peers that retrieve the content from
P2PWeb clients/peers which are already present in the
system and receiving that content;

− the uploading rate for the peers in the network.

Figure 5. P2PWeb platform based on virtual machines (two clusters of 23

and 50 machines)

Different scenarios have been tested. In the following, we
detail some scenarios that illustrate well the benefit of
deploying clients and peers together in the system in order to
provide better QoS and potentially QoE.

a) P2PWeb: 10 clients & 63 peers with 300KB/s upload rate:

In this scenario, we assume that the server can serve 10
clients directly in a C/S mode. The 63 arriving nodes to the
network -besides the measurement peer- will be then served as
peers. In this case, the Manager will pass to each arriving node
a set of 50 P2PWeb clients/peers that are connected to the
network and that are concerned about the content in question.
Figure 6 represents the number of P2PWeb clients and peers
that are connecting to the measurement peer during the first 60
seconds of the content delivery process.

Figure 6. Number of connected P2PWeb Clients and Peers per second

On the other hand, Figure 7 shows the interaction between
the measurement peer and these P2PWeb clients/peers. From
this figure, we can see that the largest part of the downloaded

content has been obtained by the clients, while a modest
contribution has been considered from peers’ side. This result
was expected, since all the peers are connecting to the network
at almost the same time. Thus, the peers will not have enough
number of chunks to exchange with the new arriving peer as
the P2PWeb clients do. On the other hand, by mapping Figure
7 to Figure 6, we can notice that although the measurement
peer is connected to 10 P2PWeb clients and to 18 peers as soon
as it arrives to the network, the interaction with these
clients/peers will not start directly. Thus, a slight "startup"
delay takes place before starting the content downloading
process. The reason is that the new arrived peer has no content
to share yet. Hence, at its arrival, nobody on the network will
be interested to exchange content chunks with him.

Figure 7. Uploading and Downloading rates over a peer

In its turn, Figure 8 demonstrates the percentage of the
downloaded data by the measurement machine in 60 seconds.
We can notice how with 10 P2PWeb clients, 63 peers and an
uploading rate of 300KB/s for each client/peer; the
measurement peer could only download 45% of the entire
content in 60 second, which necessitated the re-tuning of the
experimentation parameters in order to obtain better results.

Figure 8. Percentage of downloaded data over the meauserment peer

We tested different scenarios with variant uploading rates
and different number of clients and peers. Nonetheless, in order
to be compatible with the main objective of the work, which is
to improve the system performance in terms of QoS
parameters, we made our choice about the second scenario that

will be presented in this paper. In this scenario, we chose to
keep an uploading data rate of 300KB/s for each P2PWeb
client/peer that corresponds to a reasonable and realistic data
rate over the internet nodes. Hence, we needed to tune the
number of P2PWeb clients for obtaining better results.

b) P2PWeb: 25 clients and 48 peers with 300KB/s upload rate:

In this scenario, the server can serve 25 clients directly in a
C/S mode before becoming saturated. The rest of the nodes (48
in our virtual platform besides the measurement peer) are then
served as peers. Figure 9 represents the connecting P2PWeb
clients and peers to the measurement peer at the first 60
second of the content delivery. In this figure we can notice
how network condition fluctuation could affect the
communication speeds between the network elements from
time to time.

Figure 9. Number of connected P2PWeb Clients and Peers per second

In its turn, Figure 10 shows the downloading and the
uploading rates of the measurement peer, regarding the already
connected clients and peers to the network. In this scenario, the
contribution of the peers in the downloading process will be
less than it was in the previous scenario, since the number of
P2PWeb clients that are used as content sources is bigger.

Figure 10. Uploading and Downloading rates over a peer

However, as we can see in Figure 11, with 25 P2PWeb
clients, 48 peers (about the double number of clients) and an
uploading rate of 300KB/s for each client/peer; the

measurement peer could download the entire content in less
than 40 seconds.

Figure 11. Percentage of downloaded data over the measurement peer

As we have noticed in the presented results, two issues
need to be investigated, the startup delay of content
downloading on the peers and the ratio of clients and peers
participation for delivering the content to the new arriving
peers. In-progress tests are currently done to cope with these
issues, and to improve the performance of P2PWeb
architecture. In these tests, even for the P2P part of the
architecture, the server will not only play the role of an index
server. Hence, besides passing the list of clients/peers that
already have the content to the new arrived peer; the server will
also pass a chunk of the requested content to the peer in
question. This process will help to accelerate the contribution
of this new peer in the system, which means less startup delay
and more fairness in the participation ratio of both P2PWeb
communities, the clients and the peers.

IV. User-SATISFACTION control

Since users’ resources play an important role in the
P2PWeb architecture, it will be necessary to satisfy users’
preferences concerning the usage of their resources. In general,
P2P-based applications do not take into account user
preferences, other than QoS-related parameters, like the
available bandwidth or the maximum number of connections.
Motivated by these reasons, we thought of supporting our
P2PWeb hybrid architecture with a user-satisfaction control
technique that we call WUW (What Users Want). WUW main
goal is to allow users to strategically impact the composition of
their local neighborhoods, according to their own personal
preferences. This service has been inspired from the centralized
satisfaction-based load balancing approach that is presented in
[13]. Authors of [13] proposed a centralized C/S mechanism
that uses some generic notions (preferences, intentions,
strategy) to help balancing clients and servers’ whishes.
Besides, they defined satisfaction and adequation measures to
have a feedback about the mechanism itself. In our
contribution, we keep the definitions of preferences, intentions
and strategy. On the other hand, we provide a new definition of
the feedback measures, in which we completely change the
way of obtaining and computing them. Moreover, the WUW
service has an entirely new design that considers the

decentralized P2P part of P2PWeb hybrid architecture and that
deals with peers and not only with producers-consumers.

A. WUW overview

WUW takes into account users’ preferences during their
participation in the system. Preferences are users’ personal

choices. More formally, a preference p ∈ P is represented by a

couple p = < label, value >, e.g. <type of content, movies>,

<interest, high>, <location, Europe>, etc. A strategy s ∈ S is a

function s: P →ℝ that maps a set of preferences into real

numbers, called intentions. The concept of strategy defines the
basic way for a user to determine which neighbors he considers
interesting to trade with. WUW computes the intentions of the
local user at each P2PWeb client/peer and uses the values of
these intentions to score the user neighbors and to build a local
ranking. Only the best ranked neighbors will then be kept in the
peer’s local neighborhood. In order to assess the way with
which the applied strategies satisfy users’ expectation and limit
the extent to which bad strategies may affect performance,
WUW gives a feedback to the users. Users are thus able to
evaluate the ongoing behavior of the system with respect to
their preferences and modify their strategies to meet their
goals.

B. WUW iterative algorithm

WUW runs on each P2PWeb client/peer between the
browser plugin and the Manager. The main functions of WUW
are: (i) to evaluate the job of the content delivery application in
use with respect to the preferences expressed by the local user;
(ii) to rank the set of P2PWeb clients/peers that is associated to
the content and that has been passed by the Manager and then,
to select a subset of this set consisting in the peers whose users
most satisfy the local user’s expressed preferences.

These actions are repeatedly performed at regular intervals,
considering the most up-to-date locally available information.
At each interval, each user builds his own ranking locally. To
make meaningful choices, users must have some information
about the other P2PWeb clients/peers “aims” and how they are
behaving (recent uploads/downloads). Obviously, sharing
preferences and strategies may reveal sensitive information
about the users. The intentions are real numbers that quantify
how much a user is willing to share a given content with other
users at a given time. They reveal nothing about the reasons
behind the number, which are most probably the sensitive
information that may create privacy concerns. Intentions are
thus the right piece of information to be shared without
affecting users’ privacy.

WUW disseminates intentions and updates about recent
upload/downloads of the P2PWeb clients/peers via an epidemic
protocol. From a long time, epidemic protocols are known to
be efficient and robust ways to spread information in
decentralized networks [14]. Each instance of WUW, running
on each peer, participates in the dissemination of information
coming from all the other peers, according to the epidemic
paradigm. Each user is thus able to know the intentions of his

neighbors towards him. By combining his own intentions and
the neighbors’ intentions in the ranking phase, the resulting
ranks turn out to be an informed choice.

C. WUW feedback measures

As we have mentioned above, WUW provides a way for
the user to understand how his preferences and the applied
strategy affect the local performances and fit in the rest of the
P2PWeb network. WUW uses what we call “items” as a
measurement unit to compute and update its feedback
information. In P2PWeb, the chunks that have been already
generated at the content preparation phase will be mapped into
items in order to be used by WUW. WUW provides two
measures: satisfaction and adequation. Both are related to each
user and locally calculated on each P2PWeb client/peer,
considering the dual nature of these elements as downloaders
and uploaders.

The satisfaction “as a downloader” (resp. “as an uploader”)
measures to which extent the application prefers highly ranked
users over all those who are in the current neighborhood, to
download (resp. upload) a given content. Intuitively, a user is
more satisfied if he downloads from or uploads to users who
have the best scores, according to the local ranking provided by
the “strategy and preferences setting”.

The adequation “as a downloader” (resp. “as an uploader”)
measures to which extent the content being downloaded (resp.
uploaded) is provided (resp. requested) by highly ranked users,
over all those who are in the current neighborhood. Intuitively,
a user perceives the system as more adequate if the content he
is currently sharing is making his having more exchanges with
the best scored users.

Both measures (for both the “downloader” and the
“uploader” perspectives) are expressed by real numbers, whose
value can vary between 0 and 1, with 1 denoting the best
possible choices are made. Consistently low values during the
execution may denote that the user has chosen a very
constraining set of preferences or an ineffective strategy to
evaluate his neighbors.

D. WUW satisfaction experimentations

WUW tries to optimize the local neighborhood at each
peer, in order to improve its compliance with the local user
preferences. By selecting only subsets of the available remote
peers, according to criteria (user’s preferences) which the P2P
application in use knows nothing about, some QoS-related
performance problem may arise as a side-effect. A proper
service parameterization must therefore be found, in order to
maximize user’s satisfaction and adequation while minimizing
the impact on the provided QoS.

We have tested the WUW service in order to verify the
amount of overhead imposed to the rest of the application and
the effectiveness of the local ranking in improving user
satisfaction. Preliminary results show a negligible impact on
the global content sharing performance; we can say that the
global content sharing performance gets worse by less than 1%.

Ongoing experimentations are also dedicated to test the
effectiveness of the local ranking in improving user
satisfaction. For that, in a first test we will observe the
measures of satisfaction and adequation without WUW
influencing the P2PWeb BitTorrent-like protocol. In a second
test, the list of peers sent to this protocol will be modified by
WUW. WUW will send only the best set of peers from its
satisfaction and adequation point of view.

The full integration of WUW in the rest of the P2PWeb
architecture will immediately follow the successful completion
of the ongoing tests.

V. CONCLUSION

Our main objective in this paper was to provide an efficient
reliable and scalable content delivery service. We clarified how
neither a C/S-based, nor a P2P-based architecture can reach
this target alone, since each of the two architectures has its own
advantages and limitations. To cope with this issue, we
proposed a new hybrid architecture that is called P2PWeb,
between the centralized client/server and the non-centralized
P2P architectures for content delivery over the Internet. This
architecture helps to reduce the load over the server in order to
provide a better service for the end-users. To reach the goal, we
based on an open source of BitTorrent protocol to implement a
P2PWeb network protocol. By our experimentation results, we
prove the advantage of our proposed architecture against the
traditional C/S communication mode. Besides, we studied the
different network configurations in term of client’s number
threshold and maximum uploading rate in order to select the
best one for our contribution. Finally, we supported our system
with a user-satisfaction control technique that helps to improve
the provided service of the hybrid P2PWeb architecture. As
mentioned in Section III, we are working on enhancing
P2PWeb performance by passing a content chunk to the new
arriving nodes. Besides, we are currently studying the
feasibility of the proposed architecture for different
applications, such as the real-time streaming of scalable video
content by using the Scalable Video Coding (SVC). Moreover,
more development steps are being investigated on the WUW
technique to improve its performance and its compatibility and
utility in P2PWeb architecture.

ACKNOWLEDGMENT

The work presented in this paper has been supported by
P2PWeb project with support from OSEO and the Bretagne
and Pays de la Loire regions. The P2PWeb project is labeled by
the “Images et Réseaux” cluster. Adriana Perez-Espinosa
acknowledges the CONACyT Scholarship Program of the
Mexican Government.

REFERENCES

[1] D. Xu, S. Kulkarni, C. Rosenberg, and H. Chai, “A CDN-P2P hybrid

architecture for cost-effective streaming media distribution,” Computer
Networks, vol. 44, pp. 383-399, 2004.

[2] Y-C Tu, J. Sun, M. Hefeeda and P. Sunil, “An analytical study of peer-
to-peer media streaming systems”, ACM Trans. Multimedia Comput.

Commun. Appl, vol. 1, no. 4, pp. 354-376, 2005.

[3] A. Bakker, R. Petrocco, J. Gerber, V.r Grishchenko, D. Rabaioli and J.

Pouwelse, “Online Video Using BitTorrent and HTML5 Applied to
Wikipedia”, Int. Conf. on Peer-to-Peer Computing, pp.1-2, 2010.

[4] R. Mattson, “Enhancing HTTP to improve page and object retrieval time
with congested networks”, Ph.D. thesis, La Trobe University,

Melbourne, Australia, 2008.

[5] M. Ghareeb, A. Ksentini and C. Viho, "A multipath Video Streaming
Approach for SNR Scalable Video Coding (SVC) in Overlay Networks,"

IEEE CCNC: Consumer Communications and Networking Conference,
pp. 605-610, Las Vegas, NV, USA, 2011.

[6] M. Sathiamoorthy, M. Asteris, D. Papailiopoulous, A. Dimakis, R.

Vadali, S. Chen, D. Borthakur, “XORing Elephants: Novel Codes for
Cloud Storage”, to appear.

[7] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A

quantitative comparison,” in Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS’01, pp. 328-338, London,

UK, Springer Verlag, 2002.

[8] N. Normand, I. Svalbe, B. Parrein, and A. Kingston, “Erasure Coding
with the Finite Radon Transform,” in Wireless Communications &

Networking Conference, pp 1-6, Sydney, Australia, April, 2010.

[9] Benoît Parrein, Nicolas Normand, Majd Ghareeb, Giulio d’Ippolito,
Federica Battisti, Finite Radon Coding for Content Delivery Over

Hybrid Client/Server and P2P architecture, 5
th
 International Symposium

on Communications, Control and Signal Processin, pp 1-4, Roma, Italy,

May 2012.

[10] L. D’Acunto, J. Pouwelse, and H. Sips, “A measurement of NAT &

firewall characteristics in peer to peer systems,” in Proceedings of 15
th

ASCI Conference, pp. 1-5, June 2009.

[11] L. Golab, K. G. Bijay, and M. T. Ozsu. • On concurrency control in

sliding window queries over data streams. In Proc. Int. Conf. on
Extending Database Technology (EDBT), pp. 608-626, 2006.

[12] B. Cheng, H. Jin, and X. Liao. “RINDY: A Ring Based Overlay

Network for Peer-to-Peer On-demand Streaming”. In 3th IEEE
Conference on Ubiquitous Intelligence and Computing ,pp. 1048-1058,

Wuhan, China, September 2006.

[13] J.A. Quiane-Ruiz, P. Lamarre and P. Valduriez, “A self-adaptable query
allocation framework for distributed information systems,” The VLDB

Journal, vol. 18, no. 3, pp. 649–674, June 2009.

[14] B. Pittel, “On spreading a rumor,” SIAM Journal on Applied
Mathematics, vol. 47, no. 1, pp. 213-223, February 1987.

